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ABSTRACT
Correct error handling is essential for building reliable and secure
systems. Unfortunately, low-level languages like C often do not
support any error handling primitives and leave it up to the devel-
opers to create their own mechanisms for error propagation and
handling. However, in practice, the developers often make mistakes
while writing the repetitive and tedious error handling code and
inadvertently introduce bugs. Such error handling bugs often have
severe consequences undermining the security and reliability of the
affected systems. Fixing these bugs is also tiring—they are repetitive
and cumbersome to implement. Therefore, it is crucial to develop
tool supports for automatically detecting and fixing error handling
bugs.

To understand the nature of error handling bugs that occur
in widely used C programs, we conduct a comprehensive study
of real world error handling bugs and their fixes. Leveraging the
knowledge, we then design, implement, and evaluate ErrDoc, a
tool that not only detects and characterizes different types of error
handling bugs but also automatically fixes them. Our evaluation
on five open-source projects shows that ErrDoc can detect error
handling bugs with 100% to 84% precision and around 95% recall,
and categorize themwith 83% to 96% precision and above 90% recall.
Thus, ErrDoc improves precision up to 5 percentage points, and
recall up to 44 percentage points w.r.t. the state-of-the-art. We also
demonstrate that ErrDoc can fix the bugs with high accuracy.
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• Software and its engineering→ Software testing and debug-
ging; Empirical software validation; • Theory of computation→
Program analysis;
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1 INTRODUCTION
Secure and reliable software must handle all possible failure condi-
tions correctly. Modern programming languages, therefore, provide
exception handling features so that software can behave gracefully
even when lower-level functions fail. Unfortunately, low-level lan-
guages like C do not have any native error handling primitives.
Therefore, in C, the developers are forced to create their own error
handling conventions, often in ad-hoc program-specific manner.
Such error handling code is usually repetitive and tedious to write
correctly, resulting in error handling bugs. These bugs often lead
to serious security and reliability flaws (e.g., CVE-2014-0092 [4],
CVE-2015-0208 [5], CVE-2015-0285 [6], CVE-2015-0288 [7], and
CVE-2015-0292 [8]). In fact, improper error handling is one of the
top 10 causes of security vulnerabilities according to The Open
Web Application Security Project (OWASP) [26]. Common testing
techniques usually fail to detect these bugs as most of the errors
do not show up during regular executions. Moreover, manually
creating test cases to cover all possible error paths is not scalable
for large real-world programs.

Due to severe implications of error handling bugs, prior re-
searchers have put significant effort in detecting them automatically.
However, we still see a steady influx of error handling bugs several
of which result in security vulnerabilities. For example, there are
already two Common Vulnerability and Exposure (CVE) reports
in 2017 (CVE-2017-3318 [9], CVE-2017-5350 [10]) about error han-
dling bugs. In order to understand the true nature of these bugs
in practice, we begin with a comprehensive study of real error
handling bugs from 6 large open-source software. We create a tax-
onomy of these bugs to understand their underlying causes. Our
results indicate that error handling bugs usually occur due to four
causes: Incorrect/Missing Error Checks, Incorrect/Missing Error
Propagation, Incorrect/Missing Error Outputs, and Incorrect/Miss-
ing Resource Release. While existing bug finding tools can partially
detect some of these bugs, a large proportion of them remains yet
undetected.

Leveraging the findings of our study, we design and implement a
tool, ErrDoc, that can detect and categorize all classes of error han-
dling bugs. Using under-constrained symbolic execution, ErrDoc
first explores all the error paths—the paths along which a function
can fail. If a function fails, the error needs to be handled properly
along the error path. To ensure that, ErrDoc uses a combination
of static analysis techniques and verify whether the error value
returned from the failing function is checked, propagated upstream,
or logged. If none of these happen, ErrDoc reports error handling
bugs. ErrDoc further ensures that a program can fail gracefully by
releasing all the allocated resource. If resources are not freed along
an error path, ErrDoc reports those cases as bugs. We find that
ErrDoc can detect error handling bugs with 100% to 84% precision
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and around 95% recall. To provide developers more information
about the underlying causes of the bugs, ErrDoc also categorizes
these bugs with 83% to 96% precision and above 90% recall.

In our case study, we further notice that fixing error handling
bugs is a repetitive and tenuous process. Most functions have their
own error handling protocol. To fix an error handling bug, the
developer not only has to fix the bug correctly but also follow
the existing protocol to improve code readability and decrease
maintenance overhead. Therefore, the fixes to error handling bugs
themselves often introduce new bugs. In this paper, we propose
an algorithm to automatically generate patches for fixing different
types of error handling bugs. This algorithm modifies the Abstract
Syntax Tree (AST) of the buggy code to introduce the bug-fixes.
One of the key characteristics of our patch generation algorithm
is that the generated patches not only fix the corresponding error
handling bugs but also blend into the existing error handling code
seamlessly. Therefore, such patches are more useful to the develop-
ers as demonstrated by the fact that several of our automatically
generated patches are already accepted by OpenSSL developers as
bug-fixes without any further modifications. Overall, the bug-fixing
phase generates acceptable patches with 72% to 84% precision. To
this end, we make the following contributions:
• We conduct a comprehensive study to understand the charac-

teristics of error handling bugs. We present, to the best of our
knowledge, the first classification of error handling bugs into
four different categories—Incorrect/Missing Error Propagation,
Incorrect/Missing Error Checks, Incorrect/Missing Error Out-
puts, and Incorrect/Missing Resource Release.

• We design and implement ErrDoc, a tool to automatically de-
tect, categorize, and fix error handling bugs. To our knowledge
ErrDoc is the first tool that can automatically categorize and fix
error handling bugs.

• We present an extensive evaluation of ErrDoc on five large
open-source software including OpenSSL, GnuTLS, WolfSSL,
Curl, and Httpd. We find 106 new bugs in OpenSSL. We are in
the process of reporting them. Three of the patches generated
by ErrDoc have already been accepted by the developers.
The rest of the paper is organized as follows. Section 2 presents

the comprehensive study on real-world error handling bugs. Sec-
tion 3 introduces the tool ErrDoc, followed by its implementation
and evaluation in Section 4 and Section 5 respectively. We discuss
related work in Section 7 and conclude our work in Section 8.

2 MANUAL STUDY
To better understand what kind of error handling bugs occur in
real C code and how developers fix them in practice, we manually
studied 145 real-world error handling bugs and their fix patches.
In this section, we will discuss our study method and findings in
detail.

Study Subject.We collected version history from 6 open source
projects written in C. Table 1 summarizes the study subjects. In
total, we have studied around 13M LOC, and 30K commits with a
parallel development history of up to 8 years.

Study Method. For each studied project, we begin with extract-
ing all the changes committed within the studied time period. A
change typically contains a commit log and a patch (see Table 3)
along with other meta information. From these changes, we try

Table 1: Study Subjects
Studied Total Total EH

Project LOC period commits bug-fixes bugs

OpenSSL 469,525 2016-01-01 to 2017-01-01 3925 924 126
GnuTLS 168,777 2002-01-01 to 2010-01-01 7035 760 29
WolfSSL 166,667 2016-01-01 to 2017-01-01 1240 297 31
Curl 153,732 2008-01-01 to 2017-01-01 11654 2853 190
Httpd 1,832,007 2012-01-01 to 2017-01-01 6781 1049 70
Linux 10,462,319 2016-12-01 to 2017-01-01 3234 1377 263

Total 13,253,027 33,869 7260 709

to identify error handling bug-fix related commits. First, from the
commit messages, we remove stopwords, punctuations, and other
program-identifier-related information, and stem the commit mes-
sage using standard natural language processing (NLP) techniques.
We mark the corresponding commit to be bug-fix-related if the
processed commit messages contain at least one of the following
keywords: ‘bug’, ‘fix’, ‘check’, ‘issue’, ‘mistake’, ‘incorrect’, ‘fault’,
‘defect’, and ‘leak’. Among the identified bug-fix commits, we fur-
ther search for some combinations of error handling bug-related
keywords: ‘error path’, ‘memory leak’, ‘unchecked return’, ‘error
handl’, ‘error check’, and ‘check return’. For example, we identify
an OpenSSL commit (sha: 0a618df) with commit message :“Fix a
mem leak on an error path" as a error handling bug-fix commit.

To evaluate the precision of the above classification, we randomly
choose 120 commits (20 from each project) that are marked as error
handling bug-fix. We manually verify the commit messages and
their corresponding patches. Out of 120 commits, 115 are classified
correctly; thus, giving a precision of 95.83%. Only 5 commits are
misclassified. In all these misclassified commits, although the rele-
vant keywords are present in their commit messages, they were not
related to error handling bugs. For example, commit message of one
misclassified Httpd change (sha: 068854a; message: “APR_HAVE_foo
is checked via #if, not #ifdef ... This fixes a compile error") contains
‘fix’, ‘check’, and ‘error’ keywords; however, it was referring to a
compilation problem.

Table 2: Studied Error Handling Bugs & Patches
Projects EC EP RR EO Others Total

OpenSSL 3 2 10 2 3 20
GnuTLS 10 1 4 0 2 17
Curl 12 2 16 5 5 40
Httpd 6 2 7 3 2 20
WolfSSL 9 1 5 2 1 18
Linux 9 2 9 6 4 30

Total 49 10 51 18 17 145
(33.79%) (6.90%) (35.17%) (12.41%) (11.72%)

Characterization of the Bugs & Fixes. In our study, we found
total 709 error handling bugs across all the 6 projects (see Table 1).
Among these bugs, we randomly choose 145 bugs and manually in-
vestigate them (both commit messages and patches) to understand
the reason behind these errors. Based on this study, we identify
four different categories of error handling bugs: Incorrect/Missing
Error Checks (EC), Incorrect/Missing Error Propagation (EP), Incor-
rect/Missing Error Outputs (EO), and Incorrect/Missing Resource
Release (RR) (see Table 2). We use the code snippets in Table 3 to
discuss each of the categories below.

1. EC: Incorrect/Missing Error Checks: When an API func-
tion, say APItest , fails, it usually indicates the failure to its caller by
returning an appropriate error code. Thus, after calling APItest , the
caller should check its return value; in case, APItest returns an error
code (as per APItest specification), the caller should handle the fail-
ure properly. However, we find that developers often forget to check
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Table 3: Examples of Error Handling Bugs of different types
1. EC-A : Missing Error Checks

Project: OpenSSL
Commit ID: b197257d71694fd52ab61d173f77c8a120d3eead
File: crypto/ocsp/ocsp_ext.c
Author: Matt Caswell ⟨matt@openssl.org⟩
Date: 08/22/2016
Log: Check for error return from ASN1_object_size

os.length = ASN1_object_size (0, len , ...);

+ if (os.length < 0)

+ goto err;

...

EC-B : Incorrect Error Checks

Project: Curl
Commit ID: 520833cbe1601feed1c6473bd28c4c894e7ee63e
File: lib/ssluse.c
Author: Mike Giancola ⟨mikegiancola@gmail.com⟩
Date: 05/22/2013
Log: ossl_recv: SSL_read() returning 0 is an error too

nread = (ssize_t)SSL_read (...);

- if(nread < 0) {

+ if(nread <= 0) {

int err = SSL_get_error (...);

2. EP : Incorrect/Missing Error Propagation

Project: OpenSSL
Commit ID: e0670973d5c0b837eb5a9f1670e47107f466fbc7
File: ssl/ssl_ciph.c
Author:
Date: 02/05/2017
Log: mem leak on error path and error propagation fix

int SSL_COMP_add_compression_method () {

...

if (id < 193 || id > 255) {

SSLerr (...);

- return 0;

+ return 1;

}

3. EO : Incorrect/Missing Error Outputs

Project: WolfSSL
Commit ID: fa5dd0100146222a43d7562fdb2c600f481eaecf
File: wolfcrypt/test/test.c
Author: David Garske ⟨david@wolfssl.com⟩
Date: 05/04/2016
Log: ... Added error message for ECC test failures, to show the curve size used ...

ret = ecc_test_curve_size(rng , keySize ,...)

if (ret < 0) {

+ printf("ecc_test_curve_size %d failed!:%d",

+ keySize, ret);

return ret;

}

4. RR : Incorrect/Missing Resource Release

Project: OpenSSL
Commit ID: 85d6b09ddaf32a67a351521f84651c3193286663
File: crypto/srp/srp_lib.c
Author: Matt Caswell ⟨matt@openssl.org⟩
Date: 08/22/2016
Log: Fix mem leak on error path

BIGNUM *SRP_Calc_u (...)

{

...

if ((cAB = OPENSSL_malloc (2 * longN)) == NULL)

goto err;

...

err:

+ OPENSSL_free(cAB);

EVP_MD_CTX_free(ctxt);

return u;

}

the API return values. Table 3 EC-A shows such an example from
OpenSSL. Here, the caller function calls API ASN1_object_size
that returns< 0 on failure. The caller function did not checkwhether
the API returns an error code, which causes an error handling bug.
Developers fixed the bug in subsequent commit as shown in the
example.

Moreover, developers sometimes check some return values, but
not the entire range of possible error codes that APItest can return,
as shown in example EC-B in Table 3. The API function SSL_read
can return ≤ 0 as error code. However, the developer only checked
for < 0, which causes the error handling bug. Developer fixed the
bug in the commit shown in the example by adding the check for
zero. As per Table 2, 33.79% of the studied bugs belong to this EC
category.

Fix: The fixed patches usually include the missing check of the
API return value using if statement or correcting the if condition to
check all possible error codes. In the corresponding error handling
code (i.e. the code within if block), developers usually output an
error message notifying users about the failing condition, or prop-
agate an error value upstream using an appropriate error return
code.

2. EP: Incorrect/Missing Error Propagation: To handle an
API failing condition correctly, a caller may propagate the error code
upstream using an appropriate return value to inform the rest of the
system about the failure. However, we find that developers often
forget to propagate the correct error code. Also, due to complicated
logic in the caller function, the return value with correct error
code may get overwritten with non-failure values, or the caller
may return from another successful path by ignoring previous
failing conditions. For example, see EP case in Table 3. The caller
function SSL_COMP_add_compression_method should return 1 on
error, and 0 on non-error. However, the developer returned 0 from
an error path by mistake, which was fixed in the subsequent patch.
Table 2 shows that only 6.90% of the studied bugs belong to this
category.

Fix: The fixed patches ensure to return the correct error values,
as per the callers’ error specifications.

3. EO: Incorrect/Missing Error Outputs: An API failure can
be handled by logging/outputting an appropriate error message
so that the users become aware of the failure. However, in error
handling code developers often forget to output an appropriate
error message—either no error message is logged or outputted, or
the error message is incorrect, unclear or lacks details. Consider
the EO example in Table 3, the WolfSSL developer forgot to output
an error message; he later corrected it by showing the keySize and
return value. 12.41% of the studied bugs belong to this category (see
Table 2).

Fix: The fixes often include adding statements to output error
messages or changing error messages with more specific details.

4. RR: Incorrect/Missing Resource Release: Even if devel-
opers have logged or propagated error code correctly, they often
forget to release locally allocated resources (e.g., free memory) in
the error handling code, causing RR bugs. As shown in example
RR in Table 3, developer allocated cAB using openssl_malloc but
forgot to free that in the corresponding error handling code under
err label. The highest number of error handling bugs (35.17%) come
from Incorrect/Missing Resource Release category (see Table 2).
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Fix:To fix RR bugs, the patches usually include adding the specific
resource-free function calls in the error handling code. Sometimes,
developers put all the free statements in one block and call them
using goto statement from the error handling code to free all the
resources together.

5. Other error handling bugs: 17 out of 145 (11.72%) studied
bugs arise due to some other issues in error handling code, which
may not be directly related to error handling bugs. These include
fixing double free mistakes, refactoring or changing styles of error
handling code, and improving/cleaning error handling code.

Generic observation on bug-fix patches. Although the error
handling bug-fix patches, as discussed above under each category,
may seem to be quite straightforward to fix, we notice that a real
patch often shares similar characteristics of other error handling
code in its immediate context. For example, if a caller function
implements a common error handling code using err label (see ex-
ample RR in table 3), a fix patch often calls goto err and implement
the relevant error handling code within the common error handling
block under label err. Even if semantically correct, a fix-patch does
not get accepted by the project developers, if the patch does not
follow the protocol followed by other error handling code in the
same local context.

Threats to Validity. We investigate the error handling bugs
in the studied projects for a given time period, so our study may
not cover all the error handling bugs and patches in these projects.
The collection of error handling bugs and patches is based on NLP
techniques and keyword matching, developers may not put the key-
words that we look for in the commit messages. Also, our manual
categorization may be affected by inspectors’ biases.

3 APPROACH
Here, we introduce how ErrDoc (Error Doctor) detects and diag-
noses potential error handling bugs in C programs and also fixes
them. If a function call, say f , fails for some reason and returns
an error to its caller, say fcaller , the caller must handle the error
properly; otherwise, an error handling bug may occur. If fcaller
fails to do so, an error handling bug may occur. We begin with
defining several key terms used in this work.

Definition 3.1. Control Flow Graph (CFG): A CFG of a func-
tion in the program is a directed-graph represented by a tuple ⟨ N,
E ⟩. N is the set of nodes, where each node is labeled with a unique
program statement. The edges, E ⊆ N × N, represent possible flow
of execution between the nodes in the CFG. Each CFG has a single
begin, nbeдin , and end, nend , node. All the nodes in the CFG are
reachable from the nbeдin node and the nend node is reachable
from all nodes in the CFG. [27]

Definition 3.2. Path :Apath P is a sequence of nodes ⟨ n0, n1,....nj
⟩ in a CFG, such that there exists an edge between nk and nk+1, i.e.
(nk ,nk+1) ∈ E, for k = 0,...,j-1 [25].

Definition 3.3. Error Path: For a function pair f and its caller
fcaller , an error path Patherr (fcaller ,f ) is a path that starts from
nbeдin of fcaller ’s CFG, contains the function call to f , follows a
branch in f ’s CFG along which f ’s error conditions are satisfied,
and ends at nend of fcaller ’s CFG.

Note that, an error path spans over the CFGs of both fcaller and
f . In Figure 1, callee EVP_Digest returns error along path S2, S4,

Figure 1: sample error path (marked in red) and error handling
code (marked in gray) in the CFGs of fcaller and f . Here 0 indicates
failure, while 1 indicates success.

S5; The corresponding error path (marked in red) spans over the
CFGs of both caller ASN1_Digest and EVP_Digest: ⟨L0, L1, S2,
S4, S5, L3, L4⟩.

Definition 3.4. Non-Error Path: For a function pair f and its
caller fcaller , a non-error path Pathnerr (fcaller ,f ) is a path that
starts from nbeдin of fcaller ’s CFG, contains the function call to f ,
follows a branch in f ’s CFG along which f ’s error conditions are
not satisfied, and ends at nend of fcaller ’s CFG.

In the above example of Figure 1, Pathnerr (fcaller ,f ) is marked
as ⟨L0, L1, S2, S3, S5, L2, L4⟩.

Definition 3.5. Error Handling Code: For a function pair f and
its caller fcaller , error handling code is a sub-graph in fcaller ’s
CFG along the error path Patherr (fcaller ,f ), that explicitly checks
the error value returned by f and performs a special processing.

Here, f can return error code by explicit return statement or
changing the value of its function arguments if called by reference.
In Figure 1, gray nodes indicate error handling code.

3.1 Overview
An overview of ErrDoc’s workflow for a target function f is shown
in Figure 2. ErrDoc takes five inputs: the signature of a fallible
function (f ) and their caller functions (fcaller ), f ’s error specifi-
cations (ferrSpec ), global non-error specification (GlobalnerrSpec )
and a list of logging functions (Loggers). A list of fallible functions
that need to be tested and loggers are created manually, ferrSpec
and GlobalnerrSpec are generated by either APEx [16] or entered
manually, and the caller functions are automatically detected by
project specific call-graph.

ErrDoc then works in three phases. In Phase-I, given each caller
and callee pair, ErrDoc detects all possible error paths (Step I-a),
identifies error handling code along each error path (Step I-b), and
looks for function pairs that often occur together along error paths
(Step I-c). ErrDoc then detects and categorizes different types of er-
ror handling bugs in Phase-II. Finally, in Phase III, ErrDoc leverages
the knowledge from previous phases to fix the bugs. The rest of the
section discusses each of the phases in details. Listing 1 serves as a
motivating example to illustrate each step.

3.2 Phase-I. Explore Error Paths
This phase works in three steps: identifying error paths, detecting
error handling code and function pairs along those paths.

Step I-a. Identify Error Paths. For a given function under test
(f ), its caller function (fcaller ), and error specifications (ferrSpec )
as input, ErrDoc symbolically executes fcaller and checks if f is
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Figure 2: ErrDoc Workflow

called at each method call. If found, ErrDoc symbolically executes f
and checks its return value (fr et ) at the call site along all the possible
return paths. If fr et ∧ ferrSpec is satisfiable, then the corresponding
path is marked as an error path, otherwise it is marked as a non-
error path. ErrDoc marks all the corresponding CFG nodes and
edges along the error path. This step is adapted from our previous
tool [14].

Step I-b. Identify Error Handling Code (EH) along an Er-
ror Path. Along an error path Patherr (fcaller ,f ), ErrDoc deter-
mines the corresponding error handling code in fcaller . This is
done at AST level, i.e. ErrDoc identifies an AST subtree correspond-
ing to the error handling code. First, ErrDoc identifies the AST
sub-tree of fcaller that constitutes the error path. It then identi-
fies the AST nodes related to f method call. In particular, ErrDoc
matches the node type to be ‘Call Expression’ and node value to
be f . Let’s call such node as fast . Next, ErrDoc identifies the error
handling code based on three heuristics.
• Along the error path, if fast has an immediate parent if state-

ment and fast is inside the condition part of the if statement,
then ErrDoc considers the corresponding then or else part
(whichever falls in the error path) of the AST sub-tree as poten-
tial error handling code. For example, if(f()) then {EH code}
(see lines 22 to 29 in Listing 1).

• Along the error path, if the variable storing return value of f is
inside the condition part of a fast ’s subsequent if statement, then
ErrDoc considers the corresponding then / else part (whichever
falls in the error path) of the AST sub-tree as potential error
handling code. For example, int b = f(); if (b < 0) then
{EH code} (see lines 9 to 13 in Listing 1).

• Since error paths usually contain significantly fewer statements
than non-error paths [16], ErrDoc considers the number of state-
ments in the identified error handling code should be ≤ 5. Oth-
erwise, ErrDoc disregards the code block as error handling code.
Step I-c. Identify Function Pairs (FP) along Error Paths.

Certain resource related functions like malloc and free, or lock
and unlock usually occur in pairs. Researchers identified such
function pairs by mining source code [20, 34]. However, identifying
such pairs from all the program paths may introduce noise. Here,
we focus on only the error paths. Our intuition is that if a resource is

allocated in a function path, that resource is, in general, deallocated
before the function exits or returns, for both error and non-error
paths. Since an error path is usually shorter than other program
paths and contains less number of function calls [16], our search
space of identifying function pair will be significantly reduced. In
addition, along a non-buggy error path, the path before function
call f corresponds to a regular path and can allocate a resource; In
contrast, the path after f contains error handling code (see Figure 1)
and usually deallocates the resource before it returns or exits. Thus,
f gives a natural separation between functions related to resource
allocation and de-allocation, and thus, facilitates pair-wise analysis.

In this step, ErrDoc collects the function call sequences along
an error path that belong to fcaller CFG. ErrDoc divides the call
sequence into two sub-sequences based on whether a function is
called before or after f . For example, the call sequence ⟨f1 f2 f2
f3 f f4 f5 f3⟩ is divided into before and after subsequences ⟨f1
f2 f2 f3⟩ and ⟨f4 f5 f3⟩ respectively. Next, all the functions of
the two subsequences are paired with each other. However, if the
occurrences of a function and its pair vary in the two subsequences,
ErrDoc disregards them, as function pairs are unlikely to have
different frequencies in a program path. Thus, all f2 related pairs
from the above example are disregarded, as f2 occurred twice in
before subsequence. Also, if a function, e.g.,f3, occurs both before
and after subsequences, it is filtered out. At the end of this step,
a potential set of function pairs are identified, e.g.,⟨f1,f4⟩ and
⟨f1,f5⟩.

ErrDoc collects all the function pairs from all the error paths
in a studied project and note their corresponding occurrence fre-
quency. ErrDoc then discards all the function pairs with frequency
1, because these pairs are probably accidental. Next, for any given
function, ErrDoc tries to find top-n function pairs. Thus, for a given
right hand side function in the function pairs, ErrDoc sorts its pairs
based on their frequency in descending order and selects top-n
frequent function pairs. The same process is repeated on the left
hand side function element of the function pairs.

Note that ErrDoc identifies function pairs with one-to-one, one-
to-many, many-to-one or even many-to-many mappings. For exam-
ple, in OpenSSL project, both functions BIO_new and BIO_new_file
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are paired with BIO_free. Similarly, function CRYPTO_malloc is
matched with both CRYPTO_free and CRYPTO_clear_free.

Next, ErrDoc checks how the two functions in a pair are related
by analyzing data-dependency between their arguments and return
values along any related error path and represents the relation using
function pair signature. For example, if for a function pair FP, the
first argument of the right function is data dependent on the return
value of the left function, the signature will be: ⟨FPlef t , ret,
FPr iдht , arg1⟩. If the paired functions are not data-dependent
they are eliminated from further considerations, because they are
unlikely to handle the same resources and thus, are not related to
our purpose.

3.3 Phase-II. Detect & Categorize Error
Handling Bugs

Leveraging information gathered from previous steps, this phase
outputs buggy program location and corresponding bug category.
To detect EP and EO bugs, ErrDoc extends our previous tool [14].

Incorrect/Missing Error Propagation (EP): If along an er-
ror path Patherr (fcaller ,f ), ErrDoc finds a return statement in
fcaller , ErrDoc checks the return value to ensure an error value
is pushed upstream. ErrDoc takes the global non-error specifica-
tion (GlobalnerrSpec ) of the program under study as input. While
symbolically executing the error path, ErrDoc checks whether the
return value at fcaller can contain non-error values according
to GlobalnerrSpec , i.e. constraints on return value satisfies Glo-
balnerrSpec . If it can contain only non-error values, then ErrDoc
marks the corresponding return location as a source of EP bug. If
the return statement can contain both error or non-error values,
ErrDoc marks the location as maybe EP bug, while if it correctly
contains only error values, it is marked as not a bug. In the case of
a maybe bug, ErrDoc further checks whether the return statement
is part of an error handling code; If true, it marks a maybe bug
to EP bug, since error handling code should push an error value
upstream.

For example, in Listing 1, ErrDoc finds that at line 27, the function
is returning a success code (according to error specification shown
in line 1-4). However, it is along an error path of EVP_Digest1
routine and also within the corresponding error handling code (line
22 to 29). Thus ErrDoc marks the return statement at line 27 as
potential source of EP bug and the corresponding error path as
buggy.

Incorrect/Missing Error Checks (EC). If for functions f and
its caller fcaller , an EP bug is diagnosed in the previous step and
along the corresponding buggy error path in fcaller no error han-
dling code for f is found, ErrDoc reports it as a potential missing
EC bug.

For example, in Listing 1, corresponding to function call EVP-
_Digest at line 15, an error path (in the buggy version) is along the
line 5,7,8,9,15,22,31,32. However, there was no error check in
this path. Thus, ErrDoc reports line 15 as missing EC bug.

An error check can be incorrect. If for functions f and its caller
fcaller , an EP bug is diagnosed in the previous step and also an
error handling code is found along an error path, but the buggy EP
location reported in previous step is not part of the error handling
code, then the only reason behind the EP bug is an incorrect error
check. ErrDoc diagnoses such cases as incorrect EC.

Incorrect/Missing Error Outputs (EO). If along an error path
Patherr (fcaller ,f ), an exit statement is encountered, ErrDoc makes
sure the error situation is logged before exiting. In this step, program
specific logging utilities are taken as input. ErrDoc then checks
whether a logging function is called before exiting. ErrDoc also
checks the constraints on the symbolic arguments of the exit func-
tion to ensure they can have error values [14].

For example, in Listing 1, before exiting at line 12 on OPENSSL-
_malloc failure, nothing was logged in the buggy version. ErrDoc
diagnoses such case as EO bug.

Listing 1: Motivating Example: Adapted from OpenSSL. The com-
ments and lines in red show the bugs and their categories; the cor-
responding fixes are shown in green.

1 /*

2 Error Spec: returns 0 on error

3 1 on success

4 */

5 int ASN1_digest (...) {

6
7 int i = i2d(data , NULL);

8 unsigned char *str = OPENSSL_malloc(i);

9 if (str == NULL) {

10 /* EO bug: exiting without logging */

11 + ASN1err(..., ERR_R_MALLOC_FAILURE);

12 exit (1);

13 }

14
15 - EVP_Digest(...); /* EC bug: No error check */

16 + if (!EVP_Digest(...)) {

17 + OPENSSL_free(str);

18 + return (0);

19 + }

20
21
22 if (! EVP_Digest1 (...)) {

23 /* RR bug: Not freeing str */

24 + OPENSSL_free(str);

25
26 /* EP bug: return success code on error path */

27 - return (1);

28 + return (0);

29 }

30
31 OPENSSL_free(str);

32 return (1);

33 }

Incorrect/Missing Resource Release (RR). Given a list of
function pairs (FP) and function pairs signatures, as identified in
Section 3.2, ErrDoc checks for potential violation of the pairs along
an error path Patherr (fcaller ,f ). In particular, along the error path
in fcaller ’s CFG, for every function call appears before f , ErrDoc
checks whether there is any corresponding paired function(s) from
the FP list. If found, ErrDoc then looks for those paired functions
along this error paths and checks the corresponding signatures
along the error path in fcaller ’s CFG. If none of the paired func-
tions are found or none of the found paired functions satisfies any
of the data dependency specified in the function pairs signatures,
ErrDoc reports a potential RR bug. Even if ErrDoc finds an RR bug, it
may happen the corresponding resource is freed later in a different
function, especially for resources that may exist beyond fcaller ’s
scope. For such resources, ErrDoc simply reports warnings.

For example, in Listing 1, corresponding to OPENSSL_malloc
function at line 8, there was no OPENSSL_free function along the
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error path containing EVP_Digest1 (line 22). ErrDoc reports this
case as RR bug.

3.4 Phase-III. Fix Error Handling Bugs
In this step, ErrDoc automatically fixes four types of error handling
bugs. Let’s assume, function fcaller did not handle errors returned
by calling function f ; ErrDoc detected and reported that error. To fix
the bug, ErrDoc takes three inputs: the buggy program locations,
i.e., source code line numbers, the bug category, and any error
handling code that may pre-exist in fcaller . First, ErrDoc traverses
fcaller ’s AST (Abstract Syntax Tree) and locates the AST nodes and
its associated subtree that match the buggy program locations. Next,
depending on the bug category, ErrDoc constructs an AST subtree
to fix the bug, as described below. Finally, ErrDoc applies the fix to
the original buggy AST by deleting and adding existing AST nodes
and edges. Figure 3 represents the fixing process. Red and green
subtrees show deletion and addition operations respectively.

We observed in Section 2, a human written patch to fix error
handling bug is often integrated with a pre-existing error handling
code block present in the buggy function body. Thus, our main
challenge is to produce a bug-fix patch that blends well with its
context to resemble a human written patch. This is important as a
patch that does not follow the developers’ coding practice may not
get accepted [11].

ErrDoc looks for an existing error handling code that is already
present in fcaller . If multiple such error handling code is found,
ErrDoc chooses the one closest to the buggy location, in terms of
source code line number. We measure the distance between the
buggy program locations and an error handling code using three
heuristics: (i) If an error handling code block or the buggy locations
span over multiple source code lines, we choose the first line(s)
as their respective starting points. The distance between the two
is then measured based on their starting points. (ii) If multiple
error handling code blocks exist in the context, we choose the one
having minimum distance w.r.t. the bug location. (iii) If the same
target function (f ) is called multiple times from the same caller
(fcaller ), and at least in one call site the error is handled correctly,
we follow its way to fix the bugs at other call sites within fcaller .
Here, even if other error handling code exist for different functions
at nearer context, we give priority to the same callee. If an error
handling code block is found following either (ii) or (iii), we call
such pre-existed block as contextual error handling code.

Following this above generic strategy, the rest of the section
elaborates our big-fixing process for each bug category.

Incorrect/Missing Error Checks (EC): Given an EC bug, we
know the function f ’s call site and the specific return value that
is not checked correctly from EC bug detection step. To fix the
bug, ErrDoc first adds the missing check (i.e.if statement) on the
return value of f after its call site, as shown in 3(a). Then, if there
is no contextual error handling code, ErrDoc constructs an error
handling code block that consists of logging function call and a
return statement withGlobalerr value. Otherwise, ErrDoc refers to
the contextual error handling code. For example, if the contextual
code jumps to an error label using a goto statement, ErrDoc also
follows the same.

For example, in Listing 1, ErrDoc reports line 15 as missing EC
bug. To fix the EC bug, ErrDoc inserts an if statement at line 16
on the return value of EVP_Digest. In addition, ErrDoc leverages

(a) EC (b) EP

(c) EO (d) RR

Figure 3: Bug Fixing Examples

the contextual error handling code (line 22 to 28) and constructs
the error handling code, as shown in line 16 to 19. Note that, these
two error handling code blocks follow the same patterns.

Incorrect/Missing Error Propagation (EP): As discussed in
the previous sections, an EP bug returns an incorrect value from
fcaller along an error path Patherr (fcaller ,f ). To fix the bug, Er-
rDoc considers following three scenarios:
(1) Outside f ’s error handling code. If the buggy return statement

returns a non-error constant, ErrDoc simply replaces it with
an error-specific constant value as per Globalerr . Otherwise, if
it returns a variable, say v , ErrDoc constructs an assignment
statement: v = Globalerr . ErrDoc then inserts the assignment
statement at the beginning of f ’s error handling code.

(2) Inside f ’s error handling code with a contextual error handling
block. ErrDoc replaces the buggy return statement with the
return statement contained in contextual error handling block.

(3) Inside f ’s error handling code without contextual error handling
block. ErrDoc updates the return value of the buggy return
statement with Globalerr value.
For example, in Listing 1, ErrDoc marks the return statement at

line 27 as a potential source EP bug. The buggy statement is within
EVP_Digest1’s error handling code (line 22 to 29). To fix this EP
bug, ErrDoc replaces the buggy return statement with the return
statement from contextual error handling block (line 17 to 18).

Incorrect/Missing Error Outputs (EO): Since EO bug does
not call a logging function before exit along an error path, to fix
the bug, ErrDoc inserts an extra logging function call statement
before exit, as shown in Figure 3(c). For example, in Listing 1, before
exiting at line 12 on OPENSSL_malloc failure, nothing was logged
in the buggy version. ErrDoc diagnoses such case as EO bug and
inserts an extra logging function call statement, as per input logger
utility functions, as shown in line 11.

Incorrect/Missing Resource Release (RR): Since in an RR
bug, a resource is not released correctly along an error path, i.e.
resource allocation function is called but not the corresponding
release function, ErrDoc first retrieves the function pair signature as
identified in Section 3.2 and leveraging the signature constructs the
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corresponding paired function call statement. Then, ErrDoc inserts
the call statement before the return statement at the end of the
error path. For example, in Listing 1, ErrDoc reports RR bug along
the error path of EVP_Digest1 (see line 23), since OPENSSL_free
call was missing corresponding to OPENSSL_malloc function (line
8). Based on the signature of these two pair functions, ErrDoc
constructs a corresponding function call OPENSSL_free(str) and
inserts this function call statement before the return statement at
line 28.

4 IMPLEMENTATION
ErrDoc is composed of three phases, as shown in Figure 2. The first
two phases include error path exploration (Phase-I) and bug detec-
tion (Phase-II). They are implemented using Clang static analysis
framework [1] (adapted from previous tool EPEx [14]) and Clang
LibTooling [2]. The last part includes AST based bug fixing (Phase-
III), which is implemented using Clang LibTooling [2]. In total, the
implementation of ErrDoc includes almost seven thousand C++
LOC and three hundred Python LOC.

In particular, the implementation uses three Clang analysis steps:
i. Symbolic Execution: ErrDoc uses Clang’s static analysis frame-
work to perform an under constrained symbolic execution for iden-
tifying error paths (Step I-a) and function pairs (Step I-c), and detect-
ing and categorizing the bugs (Phase-II). We implement three Clang
checkers for Phase-I and Phase-II. ii. Data-dependency analysis:
Clang’s inbuild static analyzer does not support data-dependency
analysis. Hence, inspired by Zaks et al. [35], we leverage the sym-
bols (persistent representation of opaque values) in Clang analyzer
to implement a checker that can support simple data dependency
checking to identify the function pair signatures (see Section 3.2).
iii. AST analysis:We leverage Clang’s AST analysis framework to
identify error handling code (Step I-b) and related EC bug (Step II-a’),
refining RR bug reports (Step II-d’) and fixing the buggy programs
(Phase-III). We use Clang LibTooling [2] and Clang LibASTMatch-
ers [3] for the AST analysis.

The overall running effort of ErrDoc is similar to a clang static
checker. Given a list of inputs (see Section 3.1), a python script is
used to automate the whole process.

5 EXPERIMENTAL RESULTS
In this section, we evaluate ErrDoc’s ability of detecting, catego-
rizing, and fixing error handling bugs. In particular, we investigate
the following research questions:
• RQ1. How accurately ErrDoc detects error handling bugs?
• RQ2. How accurately ErrDoc categorizes error handling bugs?
• RQ3. How accurately ErrDoc fixes error handling bugs?

Study Subject.We select five projects: OpenSSL, GnuTLS,WolfSSL,
Curl, and Httpd for the evaluation. These projects were also studied
by EPEx. We choose the same projects for comparison. We also
create three types of dataset:

i. Manually Injected Bugs. We randomly choose source files from
each project and inject 64 error handling bugs. To insert EC bugs,
we remove existing error handling code that handles an API call.
We inject EP bugs by replacing a return ERROR statement with a
return NON_ERROR statement. EO bugs are injected by removing
an existing logging function before exit function call along an error
path. Finally, to inject RR bug, we remove a deallocation routine

from an error handling code. The corresponding original code are
considered as correct code to evaluate bug-fix performance. We
also choose 22 instances of non-buggy cases that are representative
of correct error handling code, as per our observation.

ii. Real bugs from evolutionary data. We further select 50 real
error handling bugs and patches from the error handling bug-fix
commits that we identified in the empirical study (see Section 2).

iii. New bugs in OpenSSL. ErrDoc also finds some new bugs. We
manually verify their correctness to evaluate the tool. We are also
in the process of reporting these bugs. Three of our patches are
already integrated with OpenSSL code.

Study Methodology. We measure ErrDoc’s capability to detect
and categorize error handling bugs in terms of precision and recall.
For each bug type t, suppose that E is the number of bugs detected
by ErrDoc and A is the the number of true bugs in ground truth
set. Then the precision and recall of ErrDoc in categorizing error
handling bugs are |A∩E |

|E | and |A∩E |
|A | respectively. We use similar

measurement for bug detection and fixing.

5.1 Study Results

RQ1. How accurately ErrDoc detects error handling bugs?
We evaluate ErrDoc in three settings, as described in Section 5.

We further compare ErrDoc’s accuracy with state of the art error
handling bug detection tool EPEx [14]. Table 4 summarizes the
result.

Table 4: Bug detection accuracy

manually created dataset evolutionary dataset new bugs
Total = 86 Total = 50 Total = 105

bug=64, non-bug=22 bug=50 bug=105

ErrDoc EPEx ErrDoc EPEx ErrDoc EPEx

Detected 63 41 48 26 125 53

False Positive 2 1 0 0 20 11

False Negative 3 24 2 24 N/A Over 63

Precision 0.97 0.98 1.00 1.00 0.84 0.79

Recall 0.95 0.63 0.96 0.52 N/A N/A

In the manually curated dataset, ErrDoc reports 63 bugs, out of
that 2 are false positives. To verify ErrDoc should not incorrectly
classify a non-bug as bug, we check ErrDoc’s accuracy on 22 correct
error handling instances; out of them ErrDoc mistakenly identifies
2 as error handling bugs. Thus, ErrDoc’s overall precision and recall
are 97% and 95% respectively. In contrast, on the same dataset, we
find EPEx detects error handling bugs with 98% precision and 63%
recall. In the evolutionary dataset, ErrDoc detects error handling
bugs with 100% precision and 96% recall, while EPEx’s precision
and recall are 100% and 52% respectively. Finally, we manually
verify all the new bugs that both the tools have detected. Here,
ErrDoc’s precision is 84% while EPEx’s precision is 79%. At any
given point, it is not possible for us to know how many new bugs
we cannot find; Therefore, we cannot detect recall in this case.
However, ErrDoc can detect all the bugs that EPEx detects, but
63 bugs detected by ErrDoc cannot be found by EPEx . Thus, we
conclude that ErrDoc can successfully find error handling bugs with
an overall improvement of 5 to 0 percentage points in precision and
44 to 32 percentage points in recall when compared with previous
tool EPEx.
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We notice that a major improvement on ErrDoc’s accuracy over
EPEx is due to the former’s capability of detecting Incorrect/Miss-
ing Resource Release (RR) bugs. Incorrect/Missing Resource Release
bug detection primarily depends on the methodology to finding
function pairs, as discussed in Section 3.2. Thus, to get an estimate
of RR bug detection capability, we also measure ErrDoc’s accuracy
of detecting function pairs. In particular, we investigate:

RQ1-A. How accurately ErrDoc detects function pairs?

For this experiment, we create a ground truth set of 33 real func-
tion pairs from OpenSSL, by carefully studying the functions’ spec-
ifications. As discussed in Section 3.2, we perform the function pair
analysis along error paths because error paths being shorter than
non-error paths will reduce the search space. The target function (f )
further provides an automatic divider between resource allocation
and deallocation functions. We also perform a data-dependency
analysis between the arguments and return values to the function
pairs. To check how effective these strategies are, we compare Er-
rDoc’s accuracy of detecting function pairs at different settings, as
shown in Table 5.

In particular, we compare the function pairs identified by ErrDoc
against the ground truth set. The ErrDoc’s identified function pairs
that are also in the ground truth are marked as true positives. We
further manually check the remaining function pairs detected by
ErrDoc against OpenSSL specification to decide if they are true or
false positives. To measure the false negatives, we count how many
function pairs in ground truth are not identified by ErrDoc. Table 5
shows the result.
Table 5: Accuracy of Function Pair detection at various settings

Top 1 Top 2 Top 3
Precision Recall Precision Recall Precision Recall

1. error path + f 0.45 0.30 0.34 0.36 0.27 0.36

2. all path + f 0.31 0.30 0.21 0.39 0.15 0.39

3. error path + not-f 0.23 0.30 0.17 0.36 0.13 0.36

4. all path + not-f 0.13 0.27 0.12 0.39 0.08 0.39

5. error path + f + data-dep 1.00 0.30 0.92 0.36 0.86 0.36

6. all path + f + data-dep 0.71 0.30 0.50 0.39 0.39 0.39

Function pairs are computed along only error paths (settings 1,3,5) and all the paths
(settings 2,4,6). In all the settings except 3 and 4, a target function, say f , is used as
partitioning function. Also, settings 5 and 6 consider data-dependency analysis among
the arguments of function pairs. Top 1, Top 2, and Top 3 are top pairs selected for a
given function.

The result shows that identifying function pairs using only error
paths (settings 1, 3, and 5) as opposed to all the paths (settings 2,
4, and 6) gives better precision and recall in all the settings. These
results prove our intuition that only considering error paths reduce
search space and thus introduce less noise in function pair analysis.
Hence, we see better accuracy. In addition, with a partitioning func-
tion, say f , we see better precision ( setting 1 vs. 3 and 2 vs. 4). For
example, comparing settings 1 and 3, we see f helps in gaining pre-
cision by 22 percentage point while recall remains almost the same.
These results indicate that f plays an important role in function
pairing and also ordering the paired elements. Finally, we compare
the impact of data dependency analysis (compare setting 1 vs. 5,
2 vs. 6). For instance, setting 1 vs. 5 helps in 55 percentage point
gain in precision at Top 1 while the recall remains the same. Thus,
we conclude that setting 5 (i.e. error path + f + data-dependency)

gives the highest accuracy in detecting function pairs. Note that,
the precision is highest at Top 1 setting, while the recall is lower
than top 2 and 3 as we disregard some valid pairs (e.g., OpenSSL
two-to-one or one-to-two function pairs). Since three-to-one or
one-to-three function pairs are rare, recalls at setting top 2 and top
3 are almost the same.

RQ2.Howaccurately ErrDoc categorizes error handling bugs?

Table 6: Evaluation for Bug Categorization
EC EP EO RR

manually created dataset precision 1 0.91 1 0.95
recall 0.95 1 1 0.91

evolutionary dataset precision 1 1 - 1
recall 0.96 1 - 0.95

new bugs precision 0.90 1 0.83 0.88

We evaluate ErrDoc’s categorization accuracy for all the four
bug types in three settings, as shown in Table 6. Overall, ErrDoc
categorizes the bugs with 83% to 96% precision and above 90% recall.

We find that the false positives mainly fall into three categories.
If the caller does not follow the global error/non-error values, Er-
rDoc may falsely detect them as EP, EC or RR bugs. Secondly, the
false positive may occur due to the limitation of Clang’s static ana-
lyzer. For example, one correct code block is incorrectly detected
as EP bug because the caller of this correct code block does not
follow the global non-error value. False positives are also caused
if ErrDoc misses to identify valid function pairs. For example, a
correct code block is incorrectly detected as RR bug because ErrDoc
misses alternative function pairs in case of one-to-multiple pair. In
categorizing EO bugs, if a different logging function is used than
expected false positives may occur.

Some false negatives occur as there are some EC and RR bugs
that cannot be detected by ErrDoc. For undetected EC bug, the
caller of this EC bug does not follow the global non-error value.
However, this is not fundamental limitation of ErrDoc’s algorithm;
For the RR bugs that ErrDoc fails to detect, the function pairs do
not have any data dependency (e.g.,start and end).

RQ3. How accurately ErrDoc fixes error handling bugs?
We evaluate the correctness of our bug fix algorithms using both

manual and evolutionary bug data. For both the dataset, we already
know the corresponding fix patches. Thus, to evaluate ErrDoc’s
performance, we check whether ErrDoc’s produced patches ex-
actly match with the original fix; If not, we check whether they
are semantically equivalent. Table 7 summarizes the result across
different projects. In the manually created data, 68% patches gener-
ated by ErrDoc are exactly similar to the original correct code and
16% patches generated by ErrDoc are semantically equivalent; thus
giving an overall precision of 84%. However, there are 16% patches
that are not matched with the original correct code. Most of the
mismatch arises because of the different logging messages between
the patches generated by ErrDoc and the original code.

In the second part, we apply ErrDoc to fix 50 selected real bugs
retrieved from evolutionary history. As shown in Table 7, ErrDoc
can fix 72% real bugs in a similar way the developers have fixed them.
But for 28% bugs, our patches cannot be matched with the patches
proposed by developers. Although all our produced bugs are correct,
i.e. fixing the bugs correctly, a mismatch typically results from one
of the three issues: first, developers sometimes use different logging
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Table 7: Evaluation for Bug Fix

Manually Injected Bug Real Bug
Bug Total Exact Semantic No Total Exact Semantic No

Project Type bugs match match match bugs match match match

Summary

EC 20 11 2 7 23 9 6 8
EP 10 9 1 0 5 2 0 3
RR 20 14 5 1 22 10 9 3

Total 50 34 8 8 50 21 15 14
(68%) (16%) (16%) (42%) (30%) (28%)

messages. Secondly, for some EP bugs, developers return a specific
meaningful error value instead of a global error returned by ErrDoc.
Finally, for some RR bugs, developers put all the deallocation routine
calls at the end of the caller function, and insert goto statement to
the error handling code so that all the resources can be deallocated
together. ErrDoc fails to produce such patch if no similar instances
can be found in the context.

When comparing ErrDoc’s produced patches with the patches
by developers, we find in some cases, the closest error handling
code identified by ErrDoc is a false positive instead of the real
closest error handling code. In these cases, ErrDoc cannot fix EC
bugs correctly, even though the real closest error handling code
can work.

6 THREATS TO VALIDITY
Some inaccuracy in RR bug detection may arise due to the inaccu-
racies in function pair identification. EC and EP bug detection may
have false positives when a caller does not follow their global spec-
ifications. Further, imprecise error specification and the limitation
from symbolic execution may introduce inaccuracies in identifying
error paths and function pairs. Also, our way of identifying error
handling code can affect the accuracy of EC bugs fix. However, our
evaluation shows that these cases are rare.

We evaluate ErrDoc on only five projects. Thus our results may
not generalize. To minimize this threat we evaluate the results by
creating different types of dataset across all the projects.

7 RELATEDWORK
(i) Automatically detecting error handling bugs. Researchers
proposed several techniques to automatically detect some of these
bugs. Lawall et al. used programmatching and transformation to de-
tect EC bugs in OpenSSL library [18]. Gunawi and Rubio-Gonzalez
found both EC and EP bugs in file and storage system using static
dataflow analysis [13, 30]. Jana et al. [14, 16] used symbolic execu-
tion to detect error handling paths and then detected EC and EP
bugs by checking whether appropriate error values are propagated
upstream along the error paths. ErrDoc extends Jana et al.’s work.

Saha et al. [31] proposed Hector to detect RR bugs in error han-
dling code. They used an intra-procedural live-variable analysis to
collect a set of exemplars of correct resource allocation and release.
Then, they compare each candidate fault with close exemplars to
determine if some resources need to be released. Hector has a 23%
false positive rate. ErrDoc further reduces the false positive rate
by analyzing the data dependency of the resource related variables
along restricted error paths, which span over the callee and caller
functions.

Further, there are tools to detect and analyze exception handling
bugs in Java [28, 29, 32, 33]. Since Java exception handling mecha-
nism differs significantly from C, we cannot directly use these tools,
our study is complementary to them.

(ii) Automated program repair. Automatic program repair is
a well-researched field, and previous researchers proposed many
generic techniques for general software bugs repair [15, 17, 19, 21,
22]. However, they did not consider the unique characteristics of
error handling bugs (as discussed in Section 2), thus they cannot
repair error handling bugs efficiently. For example, Meng et al.
[23, 24] proposed program repair tools that learn the program
patches from examples and applied the patches in a context-aware
fashion. ErrDoc also uses the identified error handling code to fix EC
bugs; However, users do not have to provide any explicit examples.
Lawall et al. [18] can detect and fix EC bugs in OpenSSL library.
Since they made assumptions on the return error values, their
tool suffers from a high false positive rate around 50%. In contrast,
ErrDoc is designed to detect and fix different error handling bugs
for general C programs with a high accuracy.

Further, the previous code repair tools mainly rely on test cases
demonstrating buggy behaviors. However, it is often hard to write
test cases showing erroneous behavior as error conditions rarely
occur in a regular program execution. Also, the generated patches
produced by the previous tools, even though functionally correct,
often do not blend in with the surrounding context. ErrDoc ad-
dresses both of these issues for error handling bugs by leveraging
heuristics specific to C error handling code.

(iii) Specification mining. There is a large volume of generic
techniques to automatically detect bugs based on the specifications.
Kang et al. [16] proposed APEx that automatically inferred error
specification of C APIs and detected error handling bugs with 67.4%
precision overall. Engler et al. [12] and Li et al. [20] used different
static analysis techniques to extract rules from source code and then
cross-check for contradictions. Wu et al. [34] proposed RRFinder
to automatically mine resource-releasing specifications for Java
API libraries. Our work complements these generic techniques and
particularly focuses on error handling behavior of C code.

8 CONCLUSION
Error handling bugs are common and can have a significant effect
on software security and reliability. In this paper, we first present a
comprehensive study of real world error handling bugs and create
a taxonomy of them. Next, we design, implement and evaluate Er-
rDoc that automatically detects, diagnoses, and fixes error handling
bugs. Evaluating ErrDoc on five open-source code bases reveals
that ErrDoc can detect error handling bugs with high accuracy—it
outperforms the precision of existing tool EPEx up to 5 percentage
points and recall up to 44 percentage points. ErrDoc can further
categorize and fix the bugs with high precision and recall.

Not all the error handling bugs have same consequences. In fu-
ture, we plan to examine the severity of these bugs and investigate
heuristics to automatically rank these bugs based on their poten-
tial severity. We will also extend this approach to analyze error
and exception handling behavior for programs written in other
programming languages and framework.

ACKNOWLEDGEMENTS
This work is sponsored by the National Science Foundation (NSF)
grant grant CNS-16-18771 and CNS-16-17670. The views and con-
clusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF.



Automatically Diagnosing and Repairing
Error Handling Bugs in C ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] 2011. Checker developer manual. http://clang-analyzer.llvm.org/checker_dev_

manual.html. (2011).
[2] 2012. Clang LibTooling. http://clang.llvm.org/docs/LibTooling.html. (2012).
[3] 2013. Clang LibASTMatchers. http://clang.llvm.org/docs/

LibASTMatchersReference.html. (2013).
[4] 2014. CVE-2014-0092. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2014-0092. (2014).
[5] 2015. CVE-2015-0208. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-0208. (2015).
[6] 2015. CVE-2015-0285. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-0285. (2015).
[7] 2015. CVE-2015-0288. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-0288. (2015).
[8] 2015. CVE-2015-0292. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2015-0292. (2015).
[9] 2017. CVE-2017-3318. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-3318. (2017).
[10] 2017. CVE-2017-5350. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-5350. (2017).
[11] Miltos Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learning

Natural Coding Conventions. In Proceedings of the 22nd International Symposium
on the Foundations of Software Engineering (FSE’14).

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. In ACM SIGOPS Operating Systems Review, Vol. 35. ACM, 57–72.

[13] Haryadi S Gunawi, Cindy Rubio-González, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, and Ben Liblit. 2008. EIO: Error Handling is Occasionally
Correct.. In FAST, Vol. 8. 1–16.

[14] Suman Jana, Yuan Kang, Samuel Roth, and Baishakhi Ray. 2016. Automatically
Detecting Error Handling Bugs using Error Specifications. In USENIX Security
Symposium (USENIX Security).

[15] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
Minthint: Automated synthesis of repair hints. In Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM, 266–276.

[16] Yuan Kang, Baishakhi Ray, and Suman Jana. 2016. APEx: Automated inference of
error specifications for C APIs. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 472–482.

[17] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 802–811.

[18] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and Gilles Muller.
2010. Finding error handling bugs in openssl using coccinelle. In Dependable
Computing Conference (EDCC), 2010 European. IEEE, 191–196.

[19] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs

for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3–13.

[20] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 306–315.

[21] Peng Liu, Omer Tripp, and Xiangyu Zhang. 2014. Flint: fixing linearizability
violations. In ACM SIGPLAN Notices, Vol. 49. ACM, 543–560.

[22] Francesco Logozzo and Thomas Ball. 2012. Modular and verified automatic
program repair. In ACM SIGPLAN Notices, Vol. 47. ACM, 133–146.

[23] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Sydit: creating and
applying a program transformation from an example. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 440–443.

[24] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Systematic editing:
generating program transformations from an example. ACM SIGPLAN Notices
46, 6 (2011), 329–342.

[25] Brian A Nejmeh. 1988. NPATH: a measure of execution path complexity and its
applications. Commun. ACM 31, 2 (1988), 188–200.

[26] owasp 2007. OWASP TOP 10. https://www.owasp.org/images/e/e8/OWASP_
Top_10_2007.pdf. (2007).

[27] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed
incremental symbolic execution. In ACM SIGPLAN Notices, Vol. 46. ACM, 504–
515.

[28] M.P. Robillard andG.C.Murphy. 1999. Analyzing exception flow in Java programs.
In ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE).

[29] Martin P Robillard and Gail C Murphy. 2000. Designing robust Java programs
with exceptions. In ACM SIGSOFT Software Engineering Notes, Vol. 25. ACM,
2–10.

[30] Cindy Rubio-González, Haryadi S Gunawi, Ben Liblit, Remzi H Arpaci-Dusseau,
and Andrea C Arpaci-Dusseau. 2009. Error propagation analysis for file systems.
In ACM Sigplan Notices, Vol. 44. ACM, 270–280.

[31] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L Lawall, and Gilles Muller.
2013. Hector: Detecting resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 1–12.

[32] W. Weimer and G.C. Necula. 2004. Finding and preventing run-time error
handling mistakes. In Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[33] W. Weimer and G.C. Necula. 2008. Exceptional situations and program reliability.
ACM Transactions on Programming Languages and Systems (TOPLAS) (2008).

[34] Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. 2011. Iter-
ative mining of resource-releasing specifications. In Automated Software Engi-
neering (ASE), 2011 26th IEEE/ACM International Conference on. IEEE, 233–242.

[35] Anna Zaks and Jordan Rose. 2012. How to Write a Checker in 24 Hours. (2012).
http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf

http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang-analyzer.llvm.org/checker_dev_manual.html
http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
http://clang.llvm.org/docs/LibASTMatchersReference.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0092
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0092
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0208
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0208
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0285
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0285
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0288
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0288
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0292
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0292
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3318
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3318
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5350
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5350
https://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
https://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
http://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf

	Abstract
	1 Introduction
	2 Manual Study
	3 Approach
	3.1 Overview
	3.2 Phase-i. Explore Error Paths
	3.3 Phase-ii. Detect & Categorize Error Handling Bugs
	3.4 Phase-iii. Fix Error Handling Bugs

	4 Implementation
	5 Experimental Results
	5.1 Study Results

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

